
Journal of Applied Mechanics and Technical Physics, Vol. 41, No. 6, 2000

INSTABILITY OF PLASTIC STRAIN AND FRACTURE.

STRAIN DIAGRAM FOR INHOMOGENEOUS MEDIA

UDC 539.374.1, 422.2A. M. Avdeenko

A strain diagram for a locally inhomogeneous medium (a medium with a porous structure
or a system with noncut particles) is constructed on the basis of the Cosserat nonlinear-
pseudocontinuum model. A modified criterion of geometrical softening that allows one to
establish the dependence of the moment of stability loss on the statistical characteristics of
the medium is considered.

The strain field that occurs under loading of a medium with pores or second-phase particles is inhomo-
geneous: the particles (pores) are stress concentrators and interact with one another at large values of average
strains (the flow of the neighborhood of a pore near the neighboring pore is more intense). The increase in
local deviations changes the averaged strain diagram for a “pure” (without pores or particles) medium, and
the measure of influence is determined not only by the pore concentration but also by the statistics, i.e., by
the mutual arrangement of pores (particles) or, in other words, by second or, possibly, higher-order correlation
functions.

The process of fracture should be considered together with the process of deformation. First, plastic
deformation initiates microcracking (the formation of pores) on structural heterogeneities, namely, on second-
phase particles and decelerated shear strips and at the boundaries of grains softened by segregations. Second,
the coalescence of microcracks into a mesocrack, which leads to a “hollow” viscous buckling on scales of
0.1–10.0 µm, depends on the magnitude of deformation. Third and finally, when the possibility of the plastic
relaxation of external loads is exhausted as a whole, this results in the formation of a main crack, i.e., in
macrofracture [1].

To construct an adequate model of fracture, it is primarily necessary to construct the strain diagram
for a porous medium (the medium with second-phase particles) with allowance for the fluctuations of plastic
deformation in it, relate the generalized parameters of this diagram (e.g., the effective hardening index) with
heterogeneity statistics, and formulate a modified criterion of geometrical softening, which, in particular,
makes it possible to solve the structural-optimization problem, i.e., to determine a relation between the
number and distribution of second-phase particles (pores) for a given diagram of a “pure” medium that
ensures the maximum macrouniform deformation. To tackle these questions, it is necessary to modify the
statistical nonlinear-pseudocontinuum model for making allowance for local structural heterogeneities, which
was considered in [2, 3].

For a statistical description of slow (scleronomous) deformation, we introduce the density-distribution
functional of displacement-field fluctuations Aµ(r) (µ = 1, 2, 3): f [Aµ] = exp (−W [Aµ]). We present the
generating functional of the system considered in the form of the functional series
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W [Aµ] =
∫
. . .

∫ ∞∑
k=2

V µp...qν
k (ri)

k
Aµ,p . . . Aq,ν dr1 . . . dri . . . . (1)

The real tensors V µ...ν
k (ri) of rank 2k are called the vertices, the first k indices (µ = 1, 2, 3) are referred

to the components of the displacement field Aµ, and the subsequent k indices (µ = 1, 2, 3) are referred to
the spatial derivatives Aµ,p = ∂Aµ/∂xp and r = (x1, x2, x3).

The change in the field Aµ(r) with the deformation time t is called the loading trajectory Aµ(r, t).
The distribution density f [Aµ] is a monotone function W [Aµ]; therefore, the trajectory Āµ satisfying the
variational equation δW [Aµ]/δAµ = 0 under given boundary conditions corresponds to the most probable
process. Its solution Āµ is called the “classical” trajectory, and the difference δAµ,ν = Aµ,ν − Āµ,ν is called
the fluctuations. Hereinafter, we confine ourselves only to the so-called “active” trajectories. The length

of the trajectory s =

t∫
t0

(∂Āµ,ν
∂t

∂Āµ,ν

∂t

)1/2
dτ , where Āµ,ν = ∂Āµ(r, t)/∂xν , increases during loading, and

the “active” evolution along the “classical” trajectory is the same for all microvolumes vi (M-sample in the
concepts of Il’yushin’s school [4]).

To construct the generating functional of strain-field fluctuations, we expand the functional (1) into a
series in the vicinity of the “classical” trajectory Āµ,ν . If the vertices in (1) have the maximum order n, the
vertex of fluctuations V̄ µ...ν

k (ri) has the form

V̄ µ...ν
k (ri) = V̄ µ...ν

k (ri) +
∫
. . .

∫ n∑
p=3

V µ...ν
p,r...q(ri, r

′
i)Ā

r,l(r′1, t) . . . Ā
s,q(r′p, t) dr

′
1 . . . dr

′
p.

Integration over r′1 . . . r
′
p on the “M-sample” gives a negligible constant proportional to the volume of solid

to the power p − k. We put the vector in the m-dimensional space Em (m is the number of indepen-
dent components of the tensor Ār,l) into correspondence with the tensor Ār,l and represent the combination
Āµ,ν . . . Āp,s in the form of the internal-geometry function of a “classical” trajectory, i.e., its length s, cur-
vatures ϑ1(s) . . . ϑn−1(s), and torsion ϑn(s) [4]. In this case, we have V̄ µ...ν

k (ri, t) = V̄ µ...ν
k (ri, ϑn(s), s).

Hereinafter, we restrict ourselves to the consideration of simple processes (proportional loading) for which
the scalar curvatures and torsions are identically equal to zero. Then, V̄ µ...ν

k (ri) = V̄ µ...ν
k (ri, s), i.e., the

generating functional for simple (proportional) loading of the “M-sample” is parametrized by the second
invariant of the tensors of displacement-field derivatives. Hereinafter, the bar above the vertex and δ before
fluctuations are omitted.

The normalized Gaussian mean with weight exp (−W ) for V µ...ν
k = 0 (k > 2) is called the free correlation

function of deformation, and we present it in the form

Rµ...ν20 (r) = Cµ...ν2 R20(r) = 〈Aµ,p(r′)Aq,ν(r′ + r)〉

=
∫
Aµ,p(r′)Aq,ν(r′ + r) exp (−W [Aµ]) dAµ

/∫
exp (−W [Aµ]) dAµ. (2)

Here dAµ is the symbol of continual integration and Cµ...ν2 is a certain symmetric tensor.
The operator V µ...ν

20 (ri), which is inverse to the free correlation function Rµ...ν20 (r), is determined by
means of the relation ∫

V µ...ν
2 (r1, r

′
1)R20,mpqn(r′1 − r2) dr′1 = δµmδ

ν
nδ(r1 − r2) (3)

and is called the second-degree free vertex. For a system with V µ...ν
k (ri) = 0 (k > 2), the second-order free

vertex coincides with the vertex V µ...ν
2 (ri). Generally, when V µ...ν

k (ri) 6= 0 (k > 2), the normalized two-point
mean with weight exp(−W ) determines the full correlation function Rµ...ν2 (r). The operator V µ...ν

2 (ri), which
is inverse to the full correlation function, is given by expression (3) with the substitution Rµ...ν20 (r)→ Rµ...ν2 (r).
This operator takes into account the interactions between the strain-field fluctuations (nonlinear effects) and,
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hereinafter, this operator is called the second-degree full vertex. Generally speaking, the full vertex does not
coincide with the operator for the squared field variables in the generating functional (1); now it is denoted
by V µ...ν

20 (ri).
We assume that in the initial (unloaded) state, the “classical” trajectory corresponds to the equation

of equilibrium of the Cosserat elastic pseudocontinuum model [5]

∇2Aµ +
1

1− 2ν
∇µ(∇νAν)− ξ2

0∇2(∇2Aµ −∇µ∇νAν) = 0,

where ξ0 is the structural scale of the elastic pseudocontinuum, ∇µ =
∂

∂xµ
, and ∇2 =

3∑
i=1

∂2

∂x2
µ

.

We divide the field Aµ into longitudinal and transverse components: Aµ = Anµ + Atµ; then the corre-
sponding distortions are Anµ,ν = 1/(nδµνAk,k) and Atµ,ν = Aµ,ν − Anµ,ν . We present the second-degree free
vertex in the form of the sum V µ...ν

20 (ri) = V µ...ν,n
20 (ri) + V µ...ν,t

20 (ri):

V µ...ν,n
20 (ri, s→ +0) =

Tµ...ν,n2

V 〈ε2
2〉

[3− 2ν
1− 2ν

]
δ(r1 − r2),

V µ...ν,t
20 (ri, s→ +0) =

Tµ...ν,t2

V 〈ε2
1〉

[1 + ξ2
0∇2]δ(r1 − r2),

where 〈ε2
1〉 = V −1

∫
Rµν,t20µν(r) dr and 〈ε2

2〉 = V 1

∫
Rµν,n20µν(r) dr are the transverse and longitudinal variances

of the strain-field fluctuations in the unloaded state (V is the volume of solid).
One can show that in the loaded state, the free vertices of longitudinal fluctuations remain unchanged,

and those of transverse fluctuations take the form

V µ...ν,t
20 (ri, s→ +0) =

Tµ...ν,t2

V 〈ε2
1〉

[θ(s) + ξ2
0∇2]δ(r1 − r2),

where θ(s) = (1/G) dτ/ds is the tangent hardening modulus along the “classical” trajectory normalized to
the modulus of shear.

The corresponding free correlation functions have the form

Rµ...ν,t20 (r, s) =
Cµ...ν,t2 V 〈ε2

1〉
4πrξ2

0

exp (r/ξ), Rµ...ν,n20 (r, s) = Cµ...ν,n2 V 〈ε2
12〉δ(r1 − r2),

where Cµ...ν,t2 = δµpeqeν and Cµ...ν,n2 = eµeµeνeν (eν is the unit vector in the direction r), ξ = ξ0θ
−α/2 is

the correlation interval for the transverse-strain fluctuations [α = 1 − (n + 2)g4/2, where the quantity g4 is

related to the fourth-degree vertex of strain fluctuations by the relation
∫
V µ...ν

4 (ri, s→ +0) dri = Tµ...ν4 g4],

and n is the number of components of the field Aµ [2, 3].
Accordingly, the variances of the fluctuations of transverse and longitudinal-strain fields are expressed

as follows:

〈ε2(θ)〉 = V −1

∫
Rµν,t20µν(r, θ) dr = 〈ε2

1〉θ−α, 〈ε2(θ)〉 = V −1

∫
Rµν,n20µν(r, θ) dr = 〈ε2

2〉;

because θ � 1 and 〈ε2
1〉 ≈ 〈ε2

2〉, except for the narrow region in the vicinity of macroelasticity, we have
〈ε2(θ)〉 � 〈ε2

2〉. Hereinafter, we consider only the statistics of transverse strain-field fluctuations.
The dimensionless hardening modulus decreases during loading (dθ/ds < 0), which leads to the power-

type singularities ξ(θ) and 〈ε2(θ)〉 with preservation of the similarity 〈ε2
1〉/〈ε2(θ)〉 = ξ2

0/ξ
2(θ). For the ex-

perimental dependences ξ(θ) and 〈ε2(θ)〉 for iron [6] and aluminum [2] polycrystals, the value of the index
α lies in the interval 1.1–1.2. Extrapolation of ξ(θ) to the unloaded state s → +0 gives the structural scale
ξ0 = 25–100 µm.
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We pass to the reduced variables: Aµ,ν → Aµ,νξ0V
−1/2〈ε2

1〉−1/2; then, in the state s > 0, the second-
degree free vertex is V µ...ν

20 (ri) = Tµ...ν2 (θ(s)µ2 +∇µ∇µ)δ(r1 − r2). After the Fourier transform

V µ...ν
20 (p) =

∫
V µ...ν

20 (r, r1) exp(i(pr + p1r1)) dr dr1,

we have V µ...ν
20 (p) = Tµ...ν2 (θ(s)µ2 + p2), where µ = ξ−1

0 . As a result, the dimensionless hardening modulus
θ(s) in the state s > 0 is related to V µ...ν

20 (p, θ) by the relation

θ(s) = lim
p→0

(V20(p, θ)µ−2). (4)

The disperse heterogeneities are taken into account under the assumption that the quantity λ2 depends
on the spatial coordinate: λ2 = λ2(r). We determine the mean

λ̄2 = V −1

∫
λ2(r) dr

and introduce the random function ϕ(r) = µ−2(λ2(r)− λ̄2).
In the initial state s → +0, for media with a given structural scale, the mean λ̄2 (s → +0) tends to

λ2 → µ2(1 +ηN0), where N0 is the volume portion of heterogeneities. The quantity η = (G−G1)/G (G1 and
G are the elastic moduli of the discrete heterogeneity and the medium, respectively) determines the type of
heterogeneity: if the structural heterogeneity is a pore, then η = −1. In the general case (η > −1), a particle
with a larger elastic modulus corresponds to a positive value of η. It is assumed that the heterogeneities do
not form a coupled cluster, and their average size is much smaller than the structural scale of the medium,
and the random function ϕ(r) implements a delta-correlated (the pores or particles do not overlap one
another) isotropic process: 〈〈ϕ(r1)ϕ(r2)〉〉 = ∆(r1 − r2) = ∆δ(r1 − r2), where the angular brackets mean
averaging over all realizations of the random field ϕ(r). For pores and particles, we have ∆ = N0(1 − N0)
and ∆ = η2N0(1−N0), respectively.

The generating functional for the field ϕ has the form

W1[ϕ] =
∫

ϕ2

2∆
dr,

and the common generating functional for a system with local heterogeneities is W ′[Aµ, ϕ] = W [Aµ] +
∆W [Aµ, ϕ] +W1[ϕ], where W [Aµ] is the generating functional in the nonlinear pseudocontinuum model

∆W [Aµ, ϕ] =
∫
µ2

2
Tµpqν2 ϕAµ,pAq,ν dr.

Averaging the system with the generating functional W ′[Aµ, ϕ] over the field ϕ in the continual mean-
ing, we obtain the generating functional of strain-field fluctuations in the nonlinear-pseudocontinuum model
with local heterogeneities

exp (−W ′′[Aµ]) =
∫

exp (−W [Aµ, ϕ]) dϕ

or

W ′′ = − ln
∫

exp (−W [Aµ, ϕ]) dϕ,

where dϕ is the symbol of continual integration over the field ϕ.
The normalized two-point means with weight exp (−W ′′[Aµ]) are the full correlation functions Rµ...ν2 (r)

in the nonlinear-pseudocontinuum model with heterogeneities. The operator V µ...ν
2 (ri) (the second-degree full

vertex), which is inverse to Rµ...ν2 (r), now depends on the heterogeneity statistics, namely, on the quantity
∆. By analogy with (4), the corresponding dimensionless hardening modulus is determined by the relation
Ω(s) = lim

p→0
V2(p,∆, θ(s)). The effective stress along the “classical” trajectory has the form

σ(s) =

θ(s)∫
1

Ω(θ)
ds(θ)
dθ

dθ. (5)
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Thus, the construction of strain diagrams for nonlinear media with a specified statistics of uncorrelated
local heterogeneities is reduced to averaging of the functional W ′[Aµ, ϕ] over the field ϕ and to the calculation
of the second-degree full vertex V µ...ν

2 (p) at the point p = 0 with subsequent integration of (5).
Let V µ...ν

k (ri) = 0 (k > 2) in the initial model; then the single nonlinearity in the system with lo-
cal heterogeneities is related to the term ϕAµ,νA

µ,ν . The variance of the local heterogeneity ∆ ≈ N0 � 1
is regarded as a small expansion parameter; then the paired correlation function in the model with het-
erogeneities in the state s > 0 has the form Rµ...ν2 (p) = Rµ...ν20 (p) − Rµ...q

′

20 (p)Σµ′...ν′(p)Rp...ν
′

20 (p), where

Rµ...ν20 (p) = Cµ...ν2 (µ2θ(s) + p2)−1 and Σµ′...ν′(p) = ∆T2,µ′...ν′

(∫
R20(q) dq+ 2∆

∫
R2

20(q) dq+ . . .
)

+O(∆3).

Taking into account that Cµνpq2 T2,kνpq = δµk and V2(p) = R−1
2 (p) and solving this expression relative

to V2(p), we have

V2(p) = V20(p) + Σ(p,∆) = V20(p)− ∆̄(θ)
∫
R20(q) dq,

where ∆̄(θ) = ∆ + 2∆2

∫
R2

20(q) dq +O(∆3).

Passing to the limit p→ 0 and taking into account the definition (5), we obtain an expression for the
dimensionless hardening modulus of a locally inhomogeneous medium in the form

Ω(θ) = (1 + ηN0)(θ + µ−2∆̄(θ))
∫
R20(q) dq, ∆̄(θ) = ∆ + 2∆2

∫
R2

20(q) dq + . . . .

In calculating the integrals J1 =
∫
R20(q) dq and J2 =

∫
R2

20(q) dq, to exclude singularities, a reg-

ularization determined in such a way that Ω(θ) = θ(s → +0)(1 + ηN0) = 1 + ηN0 in the unloaded state is
needed [3, 6]. The corresponding regularized integrals have the form

J1(reg) =
∫
R20(q) dq = −1

2
µ2θ ln θ, J2(reg) =

∫
R2

20(q) dq = −1
2

ln θ.

Finally, we obtain

Ω(θ) = (1 + ηN0)θ
(

1 +
1
2

∆̄(θ) ln θ + . . .
)
, ∆̄(θ) = ∆(1−∆ ln θ + . . .). (6)

It suffices to use relations (6) for construction of the strain diagram for a nonlinear medium with
heterogeneities: the first relation involves local overloading of the structure [Ω(θ) ≈ ∆ ln θ], and the second
takes into account the effective interaction between local heterogeneities [∆̄(θ) ≈ ∆2 ln θ]. It is important
that the relations obtained for Ω and ∆̄ do not include the structural-scale quantity ξ0.

One can refine relation (6) in the following manner. We introduce the functions F1(θ) = Ω/θ and
F2(θ) = ∆̄(θ)/∆. Since F1(1) = F2(1) = 1, the equalities F1(θ1)/F1(θ2) = 1/F1(θ1/θ2) and F2(θ1)/F2(θ2) =
1/F2(θ1/θ2) hold, which is equivalent to the system of renormalization-group equations

θ
d ln Ω
dθ

= θ
d ln Ω
dθ

∣∣∣
θ=1

+
d ln Ω
d∆

d∆
dθ

∣∣∣
θ=1

, θ
d∆̄
dθ

= θ
d ln ∆
dθ

∣∣∣
θ=1

.

For the initial condition Ω(s→ +0) = 1 + ηN0, the solution of this system has the form

Ω(θ) = (1 + ηN0)θ exp
( ∆̄∫

∆

A(∆)
B(∆)

d∆
)
,

where A(∆) =
d ln Ω
d ln θ

∣∣∣
θ=1

and B(∆) =
d∆̄
dθ

∣∣∣
θ=1

.

The first terms of the expansion of Ω(θ) in power of ∆ coincide with expression (4); however, the
approximation is more correct owing to the effective summation of the terms containing no matter how high
a power of ∆.
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Calculating in the first approximation of ∆, we have

Ω(θ) = (1 + ηN0)θ1+ν(θ), (7)

where ν(θ) = (1/2) ln (1 + 2∆ ln θ)/ ln θ = (1/2)∆̄(θ) ≈ ∆(1−∆ ln θ)−1 +O(∆3).

The substitution of (7) into (5) allows to one to obtain a strain diagram for a “pure” medium (N0 = 0)
that takes into account the heterogeneity statistics.

The explicit integration of (5) is possible only in the first order over ∆ for some particular dependences
θ(s). Let the “classical” trajectory in real coordinates be approximated by the dependence σ(s) = σ0s

m

(m < 1).
In the unloaded state (s → +0), we have θ(s) ≈ sm−1 → ∞; therefore, we confine ourselves to the

consideration of the strain s > s1 and note that lim
s→s1

θ(s) → 1 − 0. Hence, the corresponding stress value is

σ(s1) = σ1 = m−1(σ0m)1/(1−m). Substituting this dependence into (3), after integration we obtain σ(θ) =
(1 + ηN0)σ1(1 + (m/M)(θM/(m−1)− 1)) = (1 + ηN0)σ1(1 + (m/M)((s/s1)M − 1)), where M = m−∆(1−m).

For the majority of plastic materials σ0 = (2–9) · 10−3 (the real stress is normalized by the modulus of
shear), m = 0.2–0.3 [1] and, hence, s1 = 10−4–10−3 and s/s1 � 1 for actual processes; therefore, σ(s) ≈ σ0s

M .
The hardening index M is always smaller than that for a “pure” medium; we note that the relative error
(M −m)/m = ∆(1−m)/m ≈ η2N0(1−m)/m increases with increase in N0 and η and with a decrease in m.
In the range of small N0 < 0.02, the quantity (M −m)/m is comparable with the variance of reproducibility
of the hardening index of the “pure” medium δm/m, and its contribution can be ignored [7]. A decrease in
the dimensionless hardening modulus θ leads to an increase in ∆, i.e., to a decrease in M irrespective of the
sign of η (for −∆ ln θ ≈ 1, it is necessary to take into account the highest orders of the perturbation theory).

For active simple loading, we define the effective hardening index

M(θ) =
d lnσ(θ)
d ln θ

d ln θ
d ln s

=
Ω(θ)s(θ)
σ(θ)

,

where s(θ) is the real strain and Ω(θ) and σ(θ) are the effective hardening modulus and the stress, respectively.
In the unloaded state, s→ +0 (θ → 1−0); therefore, σ(θ → 1−0) = lim

s→+0
θ(s)s(θ) and M(s→ +0) = 1

(elastic system).
We now consider a simple active process, namely, uniaxial tension. Let Σ be the current cross section of

the sample and F be the applied force. The plastic flow is stable for dF = −σdΣ+Σdσ > 0 or d lnσ/d ln s > s,
because dΣ = −Σ ds. Otherwise, d lnσ/d ln s < s and the macrohomogeneous flow is unstable: upon uniaxial
tension, a neck forms (d lnσ/d ln s = s). For the power approximation of the true diagram σ = σ0s

m, the
solution of the equation d lnσ/d ln s = s has a simpler form, suni = m. The flow is stable for s > m and the
localization occurs for s < m.

Within the framework of the concept considered, taking into account fluctuation corrections requires a
replacement of the index m by the effective quantity M(θ). The modified criterion of the loss of flow stability
takes the form

M(θ)− s(θ) = 0 (8)

or

σ(θ)− Ω(θ) = 0. (9)

The unique solution of Eqs. (8) and (9) relative to θ (the quantity θuni) and the corresponding
uniform strain suni depend on the variance of ∆ and the strain-diagram parameters, because θ(s) is a smooth
decreasing function of real strain.

In the zero approximation of the perturbation theory, we have s0
uni = m, and Eqs. (8) and (9) should be

solved numerically in highest-order approximations. For a pure iron-based porous structure (σ0 = 8.63 ·10−3,
m = 0.31, and η = −1), the following results were obtained: an increase in the pore concentration reduces
the uniform strain from suni ≈ 0.27 for N0 = 0.05 to suni ≈ 0.14 for N0 = 0.15. If ∆ � m/(1 −m), one
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Fig. 1. Uniform strain of porous iron for N0 =
0.003 (1), 0.037 (2), 0.062 (3), and 0.110 (4).

can ignore the change in ∆ during loading: ∆ � ln−1 θ0
uni, where θ0

uni = θuni|s=m � 1. Then, suni(∆) =
suni(0) − ∆(1 − m), where suni(0) = m is the macrouniform strain of the “pure” medium. For a porous
structure, ∆ = N0(1−N0) and, hence, for N0 � 1, we have

suni(N0) = m−N0(1−m). (10)

We compare this relation with the experiment for porous iron, which was obtained by sintering and
compaction with a different volume portion of pores N0 [7]. The technological pores are distributed isotrop-
ically and uniformly. Their diameter, 1.5–3.0 µm, is much smaller than the structural scale ξ0 = 20–30 µm
of the elastic pseudocontinuum determined for a matrix from strain-profile statistics [6]. Figure 1 shows the
macrouniform strain (uniaxial tension) versus the pore concentration N0 according to the data of [7] with
allowance for the standard estimate of the r.m.s. deviation. A decrease in the pore concentration leads to
a decrease in the macrouniform strain from approximately 0.27 for N0 = 0.003 to approximately 0.2 for
N0 = 0.1. For N0 < 0.11, the dependence suni(N0) is linear: suni(N0) = (0.279± 0.009)− (0.659± 0.145)N0.
The free term 0.279 ± 0.009 and the angle of slope 0.659 ± 0.145 coincide, within the reproducibility error,
with the hardening index of the base (pure iron) m = 0.27 ± 0.02 and the quantity 1 − m = 0.63 ± 0.02,
respectively, which agrees with (10) and supports the validity of the scheme proposed for construction of the
strain diagram for an inhomogeneous medium.

Thus, when the average distance between the isotropic pores N−1/3
0 is not smaller than 2–3 pore

diameters, the uniform strain is well determined by means of the continuum strain diagram in the limit of the
delta-correlated model with allowance for only the two-point correlation functions of strain fields, although
the pore growth and microcracking are not taken into account up to values of the true strains approximately
equal to 0.2.

The model considered is only the first approximation of the real structure of a locally inhomogeneous
medium. The effects of the following order are connected, obviously, with the replacement of second-phase
particles (pores) by clusters, when the correlation interval (half-cycle of the structure) lc can be compared
with the magnitude of the structural scale ξ0. It calls for making allowance for corrections of order lc/ξ0 to
the magnitude ∆.
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